Scientists Discover Deep-Sea Bacteria Has a Metabolism Unlike Anything We’ve Seen Before 

CARLY CASSELLA

3 APRIL 2020

A curious kind of bacteria found on the floor of the deep ocean might have a metabolism unlike anything we’ve seen before.

Known as Acetobacterium woodii, scientists in Germany claim that this species, which also lives in the intestines of termites, can both create and use hydrogen and carbon dioxide to produce energy all on its own, even without the need for oxygen.

The ability to survive on organic and inorganic substances alike without oxygen makes this bacterium quite unique among microorganisms, and while scientists have long suspected something like this existed, it’s never been clearly described among acetogenic bacteria, which produce methane free from oxygen.

“There have already been speculations that many ancient life forms possess the kind of metabolism that we have described in A. woodii,” microbiologist Volker Müller from Goethe University Frankfurt explains.

“This is assumed, for example, for the Asgard archaea that were just discovered a few years ago on the seabed off of California. Our investigations provide the first evidence that these paths of metabolism actually exist.”

Hydrothermal vents were only discovered in the late ’70s, and since then we’ve come to realise these strange habitats are home to complex and dynamic forms of life, including mats of bacteria several centimetres thick, which feed on inorganic compounds like hydrogen and sulphide, as they rush up through the subsurface.

In fact, this might be one of the largest reservoirs of diverse hydrogen-converting microorganisms in the world, and, as a result, it’s thought that some of these creatures may have metabolic systems unlike anything we’ve seen before.

The thing is, excess hydrogen inhibits the fermentation process, and even the weakest hydrothermal vents easily exceed the levels needed to harbour fermentative bacteria. So how is it that such microbes exist down here?

Apparently, the answer lies in sticking together. If one bacteria that produces hydrogen teams up with another microorganism that oxidises hydrogen, like methane-producing archaea, then the latter can maintain good environmental conditions for the former to live and reproduce.

(Adam and Perner, Frontiers in Microbiology, 2018)

It’s a helpful little friendship – or syntrophic relationship – deep under the sea, but while this is probably the dominant kind of fermentation that occurs in these environments, it may not be the only one.

The new analysis essentially claims to have found a microorganism capable of playing both roles in just one bacterial cell.

 

 

Read more at:  https://www.sciencealert.com/bacteria-from-deep-hydrothermal-vents-have-a-powerful-metabolism-unlike-anything-we-ve-seen